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Introduction 
The world of Electronic Sports is growing rapidly every single day. With a wide variety of games being 
played throughout the world, major tournaments with multimillion dollar prize pools and viewership in 
the tens of millions, eSports has transformed from a childhood fantasy into a profitable career path. 
Especially with the advent of video game streaming websites such as twitch.tv, professional gamers and 
streamers alike can make six figure salaries all from the comfort of their own home. As popularity 
continues to grow, eSports will only attract more talent and media attention increasing the value of an 
already profitable industry. 
 
However, unlike other sports, very little statistical analysis is conducted on professional eSports leagues. 
This is very surprising as the game is carried out on a machine that is capable of recording virtually any 
desired statistic as opposed to other professional athletics that require manual collection of data by 
observers. Thus, I undertook this project as a proof of concept to show that data analysis and machine 
learning can be applied to the realm of eSports. In this project, I focused on the game where I have the 
most experience, Counter Strike: Global Offensive. 
 
Background 
Counter Strike: Global Offensive is a first person shooter where two teams of five members battle to 
respectively protect and destroy two objectives. Each round, both teams are spawned in a designated 
area where the defenders are generally closer to the objectives so they have time to prepare a defense 
(a popular map layout is shown in figure 1). Either team can win a round by eliminating all members of 
the other team, or by fulfilling their objective. The defending team wins if the clock (one minute and 45 
seconds in professional leagues) expires before the attacking team can activate the bomb at either 
objective site. The attackers win the round if they can activate the bomb and defend it from being 
disarmed for 35 seconds. Each match is a best of 30 series and team switch sides after playing 15 
rounds. Matches can continue into overtime if the score is tied 15 to 15 after 30 rounds where each 
league has their own rules for overtime play. 
 
While the game is simple on the surface, one of the key difficulties that players face is effective team 
management of their in game economy. The main driver behind winning a round comes from the 
equipment that each player purchases at the beginning of the round using funds they’ve accumulated 
throughout the half. Equipment includes armor and a helmet, to protect against damage, various 
weapons, auxiliary grenades, and a defuse kit for players on the defending side that decreases the time 
required to defuse a planted bomb by half. Money is earned mostly by winning rounds and eliminating 
enemy players, though the losing team does receive a much smaller amount at the end of a round that 
increases for each consecutive round lost. This leads to rapidly evolving meta strategies as teams will 
purchase equipment based on the anticipated equipment of their opponent in the following round. This 
is one of the key points I wanted to examine in this project as some teams have adopted a strategy 
called “force buying.” That is, when a team has won a few rounds in a row, if they lose a round and are 
facing a questionable economy, they will try to buy as much equipment as they can afford at the. The 
hope is that if they win the next round, their opponents, who just had their consecutive losing round 
bonus reset, will now have very little money and may have to wait a few rounds before making a full 



buy. This strategy has been successful for some teams, while not very successful for others, which led 
me to address this strategy in my analysis. 
 
Another key factor is the coordinated use of auxiliary grenades as a team. There are four main types of 
auxiliary grenades in the game: flash bangs which temporarily blind and deafen a player, smoke 
grenades which obscure a medium sized area through smoke, incendiary grenades which cover a 
medium sized area of the ground with damage dealing fire, and last HE grenades which purely do 
damage to any player in the blast radius. Using flash bangs as a team can be the difference between 
easily taking an objective site or instantly losing the round as a well-placed flash bang blinds your entire 
team leaving your opponents with easy targets. Many teams have multiple set plays, similar to a play in 
football, where each member will throw flash bangs and smoke grenades into specified areas during a 
coordinated push to block off vision and blind the enemy players. Thus in this project I wanted to 
quantify how effective uses of flash bangs and other grenades influenced winning a round. Smoke 
grenades and incendiary grenades are often used to take control over a certain area, which is more 
difficult to quantify. So instead, I focused on measuring how effectively a player uses flash bangs by 
measure the average amount of penalty time a player is blinded per flash bang and how much damage 
is dealt by a HE grenade on average. 
 
 

Figure 1: 
The layout of a typical map in Counter Strike. Notice that the defending team, the counter terrorists, spawn 

closer to both objective sites than the attackers. Also notice how there are three or four lanes from spawn to 
spawn. A typical defense for this map, de_mirage, is two defenders on the A site, one defender watching the 

middle lane, and two defenders on the B site. 



Data 
One of the main challenges faced in this project was converting recordings of each match into useable 
data for analysis. These records, known as demo files, are essentially logs of how the server updated the 
state space of the game based on the inputs it received from each client every 1/16 of a second. The 
developer of the game, Valve, published source code a few months ago for a tool to convert demo files 
into text specifically to encourage statistical analysis; however, the converted demo files are structured 
in a way that is designed for a server to analyze the inputs and change state variables, not in a way that 
is simple to extract meaningful data for analysis. Thus, what started as a process I thought would be 
fairly straight forward quickly spiraled into a much more complex problem. 
 
Since the converted demo files mirrored the changes of the state variables in the server, I created a 
parser in Java that not only read in the commands to the server, but continually updated a simulation of 
the match that was structured in a much more data oriented way.  This was an incredibly difficult task as 
very little documentation was provided on the structure of the server information, and most insights 
came from manually combing through the literal millions of lines of text that were output from each 
demo file. Essentially, I came to rely on reading in key events as they occurred, storing them in a number 
of different data structures, and then equating those events with a player as the state space variables 
related to each player updated in the next server tick. This system worked well for most events as the 
fine granularity of server updates meant that most server ticks saw only one or fewer events. However, 
difficulties arose when multiple events happened at the same time. This occurred more often than I 
expected as sometimes multiple HE grenades would detonate, multiple players would fire their 
weapons, multiple flash bangs would detonate, or any other combination of the above with a number of 
other events would occur all in the same server tick. This required more of a heuristic approach where 
events were peeled off one at a time based on the best guess of what happened by the state variable 
changes; however, the system is not perfect. The data I collected is not a perfect recreation of the 
match, but is a fairly accurate representation of how the match progressed. I’ve included the 3000 lines 
of Java code needed to parse the converted demo file and simulate the match with the project report. 
Overall, this portion of the project dominated the majority of the time I spent on the project. While I’m 
happy with the end result, I underestimated the scope of this project and should have chosen something 
more reasonable. 
 
Another issue I faced in the data collecting process is the scarcity and inconsistency of demo files across 
various leagues. Currently there are a number of independent leagues that most professional teams 
compete in simultaneously. However, each league uses its own methods for hosting matches, meaning 
that much of the structure of a demo file that is needed to identify players and information about the 
match is not consistent from one league to another. Thus, from the onset of the project I chose to tailor 
the demo parser and analysis to one of the more established leagues, ESEA, as ESEA provides free access 
to many demo files from the past three months of league play. Additionally, most leagues are divided by 
region, meaning I had to choose between analyzing the past ESEA season in North America or Europe. I 
chose the European league as the North American league is much more volatile than their European 
counterparts. Upsets frequently occur in North America and European teams often completely 
dominate North American teams during international competition. Thus, I took all matches from the 
Season 18 European Invite ESEA League that had a demo available, removed any matches with forfeits, 
and parsed the remaining 42 matches with 9 different teams playing a total to 2056 rounds. These 
matches combined were approximately 12 GBs of textual data, and took approximately an hour to parse 
using the provided code. A sample server tick of textual data is provided in appendix A.  
 
 



Figure 2: 
Histogram of the average maximum equipment value across all recorded rounds.  

Variables 
The primary question I sought to answer during my analysis is what factors influence the outcome of a 
round. I broke up the factors into essentially two categories: the equipment that the team has 
purchased at the beginning of the round, and indicators of how the team has been performing recently. 
Even though the European league is much more stable than the North American counterpart, many top 
tier teams when competing against one another have streaks of both poor and exceptional 
performance. This is also related to the constantly changing meta game strategies as teams often devise 
new strategies that take time for other teams to adapt to. Thus I created a model that takes into 
account both the current economic situation and their recent performance. 
 
First, to represent the in game economy, I chose to categorize the amount of equipment that each team 
purchased into a discrete set representing the conventional notion of various purchasing strategies. The 
four categories are first round buy (both teams have very little resources, automatically assigned to the 
first round of each half), “eco buy” (purchasing very little equipment to save resources for the next 
round), “force buy” (purchasing as much as possible with the hopes of resetting the other teams 
economy), and a “full buy” (purchasing essentially all equipment available). Each round, a team receives 
a buy categorization that comes from the maximum equipment value of each player at the beginning of 
the round averaged together. I transformed the continuous variable into a discrete set because a change 
in value is not uniformly significant over the different economy values. For example, in a full buy 
scenario, having an additional $1,000 in equipment is fairly unimportant, as that is most likely the 
difference between one or two players upgrading their weapons. However, at an eco buy level, $1,000 
could easily be the difference between and eco buy and a force buy. To judge where to define the 
cutoffs, I plotted a histogram of the average maximum equipment value over the 42 matches and 2,056 
rounds. The results can be seen in figure 2. 
 
 
 
 



The second choice I made is what variables to include as indicators of the team’s recent performance. 
Originally, I established a large number of variables that I thought would quantify the margin of victory. 
For example, I sought to include detailed information such as the amount of time remaining on the 
bomb timer when a defender defused the bomb, or how quickly the bomb was planted in a given round. 
However, many of these variables had very high correlation with one another, which would often 
produce singular matrixes that were not invertible. Thus, I whittled down the long list of variables into a 
much smaller subset that captured as much of the information in a round as possible: 
 
First Elimination – A binary variable indicating if the team eliminated a player on the opposing team 
before any of their own players were eliminated. This is also known as an entry frag. This variable 
captures how effectively a team is able to attack or hold an objective site, as often the first elimination 
dictates the success of a push on an objective site. 
 
Number of Opponents Surviving at end of Round – This variable is important to capture as often the 
winning team will not eliminate all opponents as an opponent may try to hide and survive the round 
instead of attempting to win the round if they have substantial equipment. This is also an indicator of 
the strength of the opponent’s economy. If a team is consistently eliminating most of their opponents, 
the opponent’s economy will be very low as they have to continually rebuy equipment every round, 
even if they’re winning the rounds.  Last, this variable represents how close a loss was. If a team loses 
the round and a low number of opponents remain at the end of the round, then that would indicate 
they were close to winning a round as opposed to a complete loss. Note that this variable is normalized 
to be a ratio between zero and one, where one represents all opponents are still alive. 
 
Number of Teammates Surviving at end of Round – This variable helps quantify how close a round was, 
and also is an indicator of the team’s overall economy. If the team consistently wins rounds with many 
players alive, then they will have a strong economy. This variable was also scaled to be between zero 
and one. 
 
Average Accuracy – The game is a first person shooter and ultimately many encounters come down to 
players simply hitting their shots or not, like many other professional sports. This is a strong indicator for 
success as often top European teams are unstoppable when their aim is on. 
 
Average Duration of Blinded Players per Flash bang - As I mentioned in the introduction, auxiliary 
grenades are incredibly important. This variable demonstrates how effective a team is at beginning a 
push or defending against one. Additionally, effective use of flash bangs often accompanies a strong 
defense or retake after the bomb has been planted. Scaled such that if during a round the team flashes 
an opponent for the maximum amount of time possible (about five seconds) with each flash bang they 
throw, then they will have a value of one. 
 
Average Damage per HE Grenade – Again, this variable represents how effectively a team is using 
auxiliary grenades. Grenades are often important in the beginning of the round when a team is looking 
for a first elimination or after the bomb has been planted to eliminate wounded players at the end of 
the round. 
 
Model: 
In many sports, the best indicator of future success is the most recent result. Teams often go through 
slumps or winning streaks, and a team’s more recent performance may be more indicative than 



anything else. Thus, we’re looking for a way to relate the variables defined above to guess if a team will 
win the next round. This leads to the following formulation: 
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Where x is a set of measurements that are sufficiently close to the current state of the system x0, that is 

||xi – x0||<h for some h>0). Many different interpretations of distance can be used, but this project 

focuses on the difference in time between measurements. Thus, based on the input x0 and the tuning 

parameter h (known as bandwidth), we need to calculate the optimal β, and β0 that minimizes the sum 

of squared error. This problem can be reformulated as: 
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Where x0 contains the indicator variables representing the amount purchased at the beginning of the 
current round and the other variables specified above based on the previous round. Yi is an indicator 
representing if round i was won, and ||xi – x0|| is a function representing the difference in time 
between the measurement xi and x0, and K is a kernel function. Multiple kernels such as the 
Epanechnikov kernel, quartic kernel, and triweight kernels were all tested and did not have a significant 
effect on the output of the model, so assume an Epanechnikov kernel is used throughout the rest of this 
project. This model can then be rewritten as: 
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Which is solved by: 
 

      
1 1

0 0

0 0 0

0

ˆ [ ]
1 1 1

ˆ[ ]
n h n n h

x
X W X X W Y

x





            
     

  

 

Where X0=X-x’01n.  

This leads to two design decisions in the model: the bandwidth h, and a function to determine the 

distance in time between two rounds. I tested two different functions in this project, one that is a linear 

scaling based on the difference in the number of rounds, and another that attempts to take into account 

the number of days between matches. The first function is fairly straight forward: 
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Where r(X0) is the row of x0 assuming the rows are ordered in chronological order. This function can also 

be seen as a merely a ratio of how long ago the i-th round was relative to x0, where rounds that were a 

long time in the past have a higher value of then those that are more recent (which means the kernel 

function weights values that are closer in time). The drawback with this function is that regardless if the 

last match was two days or two weeks ago, the distance between a round in the current match and the 

last match is always the same. The other function used is a little more complex, and takes into account 

the difference in days between matches: 
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Where xd is the day of the i-th match, xr is the round number of the i-th match played on that day, and xp 

is the total number of rounds played the day of the i-th match. The second function is essentially a 

composite of two different functions, one for when matches are not on the same day, and a second for 

when multiple matches are held in the same day. When a previous match is on a different day, the day 

portion is weighted by the differences in days between matches over the total timespan of the season 

for the team modified by the ratio of the cumulative number of rounds played by the i-th match over 

the total number of rounds played that day. If the previous match occurs on the same day, then the 

rounds that day are essentially weighted in the same way as function one, but they are scaled by 

minimum distance of the previous day. That way the function is generally decreasing in distance as 

matches are read forward chronologically.  

The other design parameter in this model is the bandwidth, h. In order to determine the optimal 

bandwidth to minimize mean squared error, I used a time series variant of cross validation where I 

would begin with some initial value, say m, and use data points (xi,yi) for i=1,…,m-1 to determine the 

value of ym based on the input xm. I would then compute the mean squared error, em, and continue the 

process with m+1, continuing until I reached n-1. I would then compute the mean squared error as the 

average of all the individual errors. Typically, a starting place of m=4n/5 was used, or approximately 80% 

of the data was used to fit the model, and the remaining 20% was used for validation. Each team was 

treated independently of the others, and the opponent was not taken into account. The results from the 

experiments can be seen in figures 3-5. 

 
 
 
 
 
 
 
 
 



Figure 3: 
Average cross-validation error when using the first time distance function. 

 
 
 
Results 
For experiments involving the first time difference function, the average cross validation error decreases 

in bandwidth. However, each team reaches a cutoff where the inverted term in the solution becomes 

singular and can no longer be calculated, which could potentially be remedied by recording more data. 

Each team also has a fairly similar shaped error curve, except for Gamers2, who have approximately 50 

fewer rounds of data than the other teams. This could contribute to the higher bandwidth since the 

number of rounds is lower and requires less scaling than the other teams. This result shows that a linear 

scaling of the differences in rounds produces a very consistent bandwidth selection, and most likely will 

lead to a more uniformly applicable results as further data is collected.  

On the other hand, the results for the second time difference function are a little bit less promising, as 

shown in figures 4-5. Again, Gamers2 is the team with the lowest average cross validation error; 

however, this time they have a much lower bandwidth than the next set of teams. This would indicate 

that more information is being excluded and there is a greater focus on recent matches than with other 

teams, which seems to contradict the previous result with the other time difference function. However, 

the differences in bandwidth at each stage are most likely due to a scaling compensation since both time 

difference functions rely on the overall length of the time horizon and the number of rounds played. 

Additionally, the shape of the curve seems to indicate that instead of rounds being spaced apart linearly 

in distance like the other time difference function, the difference in time between rounds is more 

clustered. This is indicated by the sharp decreases in error as a large number of rounds are dropped in 

rapid succession as bandwidth decreases. 

 



Figure 4: 
Average cross-validation error when using the second time distance function. Note that Gamers2 was 

plotted alone because their average error was much lower than any other teams error term. 

 
 
 
 
 
Alternatively, every other team had a much higher validation error when the second time difference 
function was used, as seen in figure 5. Two teams, Titan and Virtus Pro, had such a large change that 
they no longer could be represented on a graph with the other teams. This result indicates that the 
second time difference function is often outperformed by the simpler alternative of linear scaling. Even 
in certain circumstances when the second time difference function outperforms the linear method, 
there is not a significant difference in value. 
 
Additionally, the results with the two time distance functions seems to indicate that large gaps in 
schedules do not necessarily have a large impact on a team’s performance. This could also be attributed 
to the many other matches that most professional teams play across leagues on a daily basis. Very rarely 
do teams take a break from practices or matches, which would also support the result that a linear 
scaling time difference is a reasonable and accurate model. 
 
Last, the average cross-validation error is very high for predicting either a value of one or zero. I noticed 
this was due to a relatively large number of values being used in the aggregate guess for y. Increasing 
the amount of data collected would allow the bandwidth to decrease without creating a singular matrix, 
and thus would lead to a decrease in the average cross-validation error as less values are used for the 
aggregate guess of y.  
 
Extensions 
As a proof of concept, I’ve shown that sufficiently useable data can be extracted from the recorded 
demos of professional eSports matches and analyzed to better understand the trends in the game. 
While the work I performed was very valuable both in terms of personal programming development and 
statistical analysis, there are many extensions that would add more depth to this project in the future: 
 



Figure 5: 
Average cross-validation error when using the second time distance function. The error terms are much 

higher using the second time distance function as opposed to the first. 

Increased Data – As I mentioned before, professional teams often play multiple matches a day across a 
number of different leagues. Expanding the demo parser I created to accommodate a number of 
different leagues would lead to higher accuracy models and a more comprehensive image of the 
professional eSports scene. 
 
Accounting for Map – One of the biggest factors in a professional match is what map is played. Teams 
often have a pool of maps that they consistently practice and choose for matches, meaning that they 
have better strategies and more comfortable on some maps as opposed to others. Accounting for the 
map being played would add a very critical piece to the model. 
 
Accounting for Opponent – The most prominent feature in any matchup is who you’re playing. As with 
many other sports, each team has their own unique play styles. Some teams have elaborate coordinated 
set plays to push their way onto an objective, whereas other teams are incredible aimers and rely on 
their raw skills to win matches. Your own team’s play style coupled with the playstyle of your opponent 
can have a drastic effect on a match and would be a useful addition to the model. 
 
Alternative Modeling Techniques – An interesting approach to characterizing the system would be as a 
control feedback loop. During a round, a player can only control their own moves and has to base their 
play off the state of their teammates and opponents. Once a move is made, the other players in the 
game make their own moves, the system is updated, and another move can be played. Alternative 
formulations could lead to interesting insights on some of the mechanics I established in this project. 
 
Conclusion 
The world of eSports is growing at an immense rate every day. As competition continues to intensify, 
teams and players will start looking towards new ways of analyzing and seeing the game. This creates a 
large opening in the field to produce groundbreaking and meaningful results as the industry begins to 
see the significance of data driven analysis. I’ve shown in this project as a proof of concept that such 
analysis is feasible, and I will actually continue to improve and refine the tools I’ve created for this 
project to show how meaningful analysis of this kind can be to the eSports industry. 
  
  



Appendix A – Sample Server Tick 
(16 per second) 
---- CNETMsg_Tick (12 bytes) ----------------- 
tick: 136051 
host_computationtime: 4914 
host_computationtime_std_deviation: 1169 
host_framestarttime_std_deviation: 85 
Entity Delta update: id:1, class:34, serial:365 
Table: DT_CSPlayer 
Field: 1, m_nTickBase = 136051 
Entity Delta update: id:2, class:34, serial:781 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 51 
Field: 1, m_nTickBase = 136052 
Field: 2, m_vecOrigin = 1096.165894, -1489.290039 
Field: 4, m_vecVelocity[0] = -120.744820 
Field: 5, m_vecVelocity[1] = -119.586380 
Field: 7, m_vecOrigin = 1096.165894, -1489.290039 
Field: 18, m_angEyeAngles[0] = 0.703125 
Field: 19, m_angEyeAngles[1] = 224.296875 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.898438 
Field: 23, m_cycleLatch = 6 
Entity Delta update: id:3, class:34, serial:839 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 55 
Field: 1, m_nTickBase = 136056 
Field: 2, m_vecOrigin = 589.897888, 466.319092 
Field: 3, m_vecOrigin[2] = -520.509338 
Field: 4, m_vecVelocity[0] = 33.920345 
Field: 5, m_vecVelocity[1] = 50.227203 
Field: 7, m_vecOrigin = 589.897888, 466.319092 
Field: 8, m_vecOrigin[2] = -520.509338 
Field: 23, m_cycleLatch = 0 
Entity Delta update: id:4, class:34, serial:773 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 58 
Field: 1, m_nTickBase = 136059 
Field: 2, m_vecOrigin = 336.840912, -1088.759644 
Field: 3, m_vecOrigin[2] = -254.136307 
Field: 4, m_vecVelocity[0] = 13.066470 
Field: 5, m_vecVelocity[1] = -197.714493 
Field: 7, m_vecOrigin = 336.840912, -1088.759644 
Field: 8, m_vecOrigin[2] = -254.136307 
Field: 18, m_angEyeAngles[0] = 33.046875 
Field: 19, m_angEyeAngles[1] = 278.437500 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.953125 
Entity Delta update: id:5, class:34, serial:152 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 51 
Field: 1, m_nTickBase = 136052 
Field: 2, m_vecOrigin = 88.557991, -1197.625366 
Field: 4, m_vecVelocity[0] = -33.087921 
Field: 5, m_vecVelocity[1] = -208.589767 
Field: 7, m_vecOrigin = 88.557991, -1197.625366 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.898438 
Entity Delta update: id:6, class:34, serial:470 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 51 
Field: 1, m_nTickBase = 136052 
Field: 2, m_vecOrigin = 738.151489, -576.096680 
Field: 4, m_vecVelocity[0] = 8.613561 
Field: 5, m_vecVelocity[1] = -9.472559 
Field: 7, m_vecOrigin = 738.151489, -576.096680 
Field: 18, m_angEyeAngles[0] = 355.781250 
Field: 19, m_angEyeAngles[1] = 219.375000 

Field: 22, m_flGroundAccelLinearFracLastTime = 1062.898438 
Field: 23, m_cycleLatch = 9 
Entity Delta update: id:7, class:34, serial:341 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 55 
Field: 1, m_nTickBase = 136056 
Field: 2, m_vecOrigin = 210.876282, -1284.886597 
Field: 4, m_vecVelocity[0] = 136.680557 
Field: 5, m_vecVelocity[1] = 20.196390 
Field: 7, m_vecOrigin = 210.876282, -1284.886597 
Field: 18, m_angEyeAngles[0] = 3.867188 
Field: 19, m_angEyeAngles[1] = 354.023438 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.929688 
Field: 23, m_cycleLatch = 5 
Entity Delta update: id:8, class:34, serial:721 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 54 
Field: 1, m_nTickBase = 136055 
Field: 2, m_vecOrigin = -392.867004, -938.766052 
Field: 4, m_vecVelocity[0] = 0.000000 
Field: 5, m_vecVelocity[1] = 0.000000 
Field: 7, m_vecOrigin = -392.867004, -938.766052 
Entity Delta update: id:9, class:34, serial:280 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 53 
Field: 1, m_nTickBase = 136054 
Field: 2, m_vecOrigin = 520.843201, -1210.014038 
Field: 4, m_vecVelocity[0] = 182.619568 
Field: 5, m_vecVelocity[1] = 78.343468 
Field: 7, m_vecOrigin = 520.843201, -1210.014038 
Field: 18, m_angEyeAngles[0] = 346.289063 
Field: 19, m_angEyeAngles[1] = 89.648438 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.914063 
Entity Delta update: id:10, class:34, serial:920 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 55 
Field: 1, m_nTickBase = 136056 
Field: 2, m_vecOrigin = 1836.430298, -1707.787354 
Field: 4, m_vecVelocity[0] = -194.846207 
Field: 5, m_vecVelocity[1] = -40.037720 
Field: 7, m_vecOrigin = 1836.430298, -1707.787354 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.929688 
Entity Delta update: id:11, class:34, serial:12 
Table: DT_CSPlayer 
Field: 0, m_flSimulationTime = 55 
Field: 1, m_nTickBase = 136056 
Field: 2, m_vecOrigin = 90.845116, -1118.738525 
Field: 4, m_vecVelocity[0] = 103.531563 
Field: 5, m_vecVelocity[1] = -187.610428 
Field: 7, m_vecOrigin = 90.845116, -1118.738525 
Field: 17, m_flFOVTime = 1062.898438 
Field: 18, m_angEyeAngles[0] = 6.679688 
Field: 19, m_angEyeAngles[1] = 174.375000 
Field: 22, m_flGroundAccelLinearFracLastTime = 1062.929688 
Field: 311, m_hLastWeapon = 1728659 
Field: 584, m_hActiveWeapon = 1270247 
Field: 623, m_iAddonBits = 204 
Field: 624, m_iPrimaryAddon = 13 
Entity Delta update: id:85, class:112, serial:184 
Table: DT_PredictedViewModel 
Field: 8, m_nAnimationParity = 5 
Field: 10, m_nNewSequenceParity = 6 
Field: 11, m_nResetEventsParity = 6 



Entity Delta update: id:87, class:112, serial:432 
Table: DT_PredictedViewModel 
Field: 8, m_nAnimationParity = 6 
Field: 10, m_nNewSequenceParity = 7 
Field: 11, m_nResetEventsParity = 7 
Entity Delta update: id:95, class:112, serial:595 
Table: DT_PredictedViewModel 
Field: 8, m_nAnimationParity = 7 
Field: 10, m_nNewSequenceParity = 2 
Field: 11, m_nResetEventsParity = 2 
Entity Delta update: id:98, class:112, serial:700 
Table: DT_PredictedViewModel 
Field: 8, m_nAnimationParity = 2 
Field: 10, m_nNewSequenceParity = 1 
Field: 11, m_nResetEventsParity = 1 
Entity Delta update: id:103, class:112, serial:954 
Table: DT_PredictedViewModel 
Field: 8, m_nAnimationParity = 2 
Field: 10, m_nNewSequenceParity = 2 
Field: 11, m_nResetEventsParity = 2 
Entity Delta update: id:106, class:112, serial:483 
Table: DT_PredictedViewModel 
Field: 0, m_nModelIndex = 350 
Field: 1, m_hWeapon = 1270247 
Field: 4, m_nSequence = 0 
Field: 8, m_nAnimationParity = 4 
Field: 10, m_nNewSequenceParity = 7 
Field: 11, m_nResetEventsParity = 7 
Entity Delta update: id:147, class:205, serial:844 
Table: DT_WeaponGalilAR 
Field: 402, m_fEffects = 4257 
Field: 457, m_iState = 1 
Entity Delta update: id:153, class:205, serial:378 
Table: DT_WeaponGalilAR 
Entity Delta update: id:161, class:9, serial:435 
Table: DT_BaseCSGrenadeProjectile 
Field: 0, m_flSimulationTime = 51 
Field: 2, m_cellX = 541 
Field: 3, m_cellY = 460 
Field: 6, m_vecOrigin = 2.500000, 9.687500, 8.000000 
Field: 7, m_angRotation = 258.442383, 0.000000, 178.110352 
Field: 98, m_vecVelocity = -639.546631, -637.108521, 73.682373 
Entity Delta update: id:328, class:1, serial:237 
Table: DT_WeaponAK47 
Entity Delta update: id:332, class:219, serial:494 
Table: DT_WeaponP250 
Field: 8, m_fAccuracyPenalty = 0.009100 
Entity Delta update: id:336, class:202, serial:509 
Table: DT_WeaponFiveSeven 
Field: 8, m_fAccuracyPenalty = 0.009100 
Entity Delta update: id:338, class:9, serial:968 
Table: DT_BaseCSGrenadeProjectile 
Field: 0, m_flSimulationTime = 51 
Field: 6, m_vecOrigin = 5.437500, 12.562500, 2.500000 
Field: 7, m_angRotation = 22.412109, 0.000000, 240.908203 
Field: 98, m_vecVelocity = -158.985474, -78.751892, -69.146149 
Entity Delta update: id:346, class:38, serial:301 
Table: DT_WeaponDEagle 
Field: 8, m_fAccuracyPenalty = 0.015457 
Entity Delta update: id:348, class:9, serial:922 
Table: DT_BaseCSGrenadeProjectile 
Field: 0, m_flSimulationTime = 51 
Field: 2, m_cellX = 533 
Field: 6, m_vecOrigin = 14.437500, 7.312500, 11.500000 
Field: 7, m_angRotation = 277.646484, 0.000000, 90.922859 
Field: 98, m_vecVelocity = 353.329681, -167.682281, 84.151299 

Entity Delta update: id:352, class:76, serial:964 
Table: DT_FuncRotating 
Field: 7, m_angRotation[1] = 168.793945 
Field: 9, m_flSimulationTime = 51 
Entity Delta update: id:481, class:28, serial:546 
Table: DT_WeaponC4 
Entity Delta update: id:485, class:227, serial:339 
Table: DT_WeaponSSG08 
Entity Delta update: id:487, class:88, serial:620 
Table: DT_WeaponKnife 
Field: 402, m_fEffects = 4225 
Field: 457, m_iState = 2 
---- CSVCMsg_TempEntities (11 bytes) ----------------- 
num_entries: 1 
entity_data: "\302\236\377\177\001\014\264" 
player_blind eventid:164  
 userid: 5  
player_blind eventid:164  
 userid: 6  
player_blind eventid:164  
 userid: 13  
flashbang_detonate eventid:151  
 userid: 14  
 entityid: 338  
 x: 673.486267  
 y: -1525.389771  
 z: -412.927612 


